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• We review studies on computational implications of dendritic nonlinearities in neurons.

• We discuss how synaptic plasticity can interact with dendritic nonlinearities for improved learning.

• We link these studies to applications in machine learning and deep learning.

• Thus, we propose a path to more powerful and more efficient machine learning methods and hardware.
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Abstract

In this paper, we discuss the nonlinear computational power provided by dendrites in biological and artificial neurons.

We start by briefly presenting biological evidence about the type of dendritic nonlinearities, respective plasticity rules

and their effect on biological learning as assessed by computational models. Four major computational implications

are identified as improved expressivity, more efficient use of resources, utilizing internal learning signals, and enabling

continual learning. We then discuss examples of how dendritic computations have been used to solve real-world

classification problems with performance reported on well known data sets used in machine learning. The works

are categorized according to the three primary methods of plasticity used—structural plasticity, weight plasticity, or

plasticity of synaptic delays. Finally, we show the recent trend of confluence between concepts of deep learning and

dendritic computations and highlight some future research directions.

Keywords: Non-linear dendrites, Plasticity, Rewiring, Expressivity, Maxout networks, Machine learning, Deep

Neural Networks

Introduction

The last decade has seen a resurgence of interest in neural networks fueled by the huge success of deep learning

across different domains spanning object detection and recognition in images (Krizhevsky et al., 2012; He et al.,

2016), natural language processing (Collobert et al., 2011), speech recognition (Hinton et al., 2012), face verification

(Taigman et al., 2014) etc. Despite those achievements, there is no doubt that current deep neural network models are

still far away from reaching the performance level of human intelligence. It is clear that biological neuronal networks

are far superior to the state-of-the-art deep neural network models especially in sensorimotor tasks—a child can easily

tie shoelaces while a robot would struggle with such fine manipulation. Quite naturally one therefore investigates

biological neural networks in order to determine the missing parts.

The basic model of a neuron used in deep learning is still largely the same as the ones introduced by McCulloch

and Pitts—linear synaptic summation followed by a lumped nonlinearity (the type of nonlinearity has been changed

to rectified linear unit from sigmoid or Heaviside). This model totally ignores any possible computational role played

by dendrites, the thin processes that extend from the cell bodies of neurons and serve as their primary receiving

end. Processing of synaptic inputs by dendrites depends on various factors: the morphology of the dendritic tree,

the composition of ionic mechanisms, and the plasticity rules that govern learning. These factors influence dendritic

integration in interacting ways, and furnish dendrites with the ability to perform complex computations. Here, the term

computation is used in a generic sense to refer to how well a dendrite can implement a given input-output mapping

such as a logical AND/OR/XOR operation or implement a non-linear transformation such as signal amplification.

These types of local computations help neurons to solve more complex problems like the discrimination of incoming

patterns/memories.

Morphologically complex dendrites can, for example, act as filters due to the passive attenuation and temporal

filtering of input signals traveling to the cell body (Mengual et al., 2020; Spruston, 2008), thus enabling neurons to

infer the location and kinetics of incoming signals. Dendrites are also home to a wide variety of ionic mechanisms,

many of which have voltage-gated (active) conductances that support the generation of dendritic spikes (reviewed in

⋆Authors are named alphabetically according to last names.

Preprint submitted to Elsevier September 7, 2021



Figure 1: Biological neurons support a variety of dendritic spikes, which can occur throughout the dendritic tree. They also support longer-lasting

dendritic plateau potentials, which are primarily restricted to the apical tuft of pyramidal neurons. These regenerative events influence signal

integration in non-linear ways. For example, integration of inputs within a strongly activated branch can be described by a sigmoidal activation

function whereas the same inputs distributed across branches summate linearly (figure adopted from Polsky et al, 2004). Moreover, active dendrites

implement a range of plasticity rules. Inputs that fire together tend to wire together, forming synapse clusters within individual branches. Inputs

can also organize in distal vs. proximal ones within individual branches, thus enabling non-linear interactions between them. Note that different

colors of synapses are used to indicate different input afferents that fire out of sync. Same color denotes afferents that fire synchronously
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(Major et al., 2013)), see Fig. 1. These spikes allow neurons to perform various nonlinear computations, ranging from

logical operations to low-pass filtering, amplification or segregation of signals, coincidence detection, etc. (Ariav et al.,

2003; Softky, 1994; Spruston, 2008; Payeur et al., 2019). The benefits provided by nonlinear dendritic integration are

maximized through their coupling to a set of multiscale plasticity rules (Bono et al., 2017; Kastellakis and Poirazi,

2019) involving weight, delay, or structural plasticity (used interchangeably with rewiring in this paper) that underlie

learning in biological networks.

The goal of this review paper is to summarize efforts to link theories of information processing in neural networks

with nonlinear dendritic components with modern deep learning approaches. We first review prior work that has

explored principles of biological learning in simulated neuronal networks with non-linear dendrites (Section Princi-

ples of Biological learning) and highlight four main computational implications of having dendrites. However, the

work summarized in this section does not demonstrate the practical feasibility of the above approaches in solving real

world problems such as image recognition where machine learning methods are typically used. Section Applications:

Machine learning bridges this gap by reviewing studies that demonstrate how neurons with non-linear dendrites per-

form on traditional machine learning benchmark tasks and compare the performance with conventional algorithms.

Finally, connections between deep learning and dendritic properties are summarized in Section Deep Learning, given

the increased interest in this topic.

Principles of Biological learning with Non-linear dendrites

The role of nonlinear dendritic mechanisms in advancing neuronal computations has been investigated in various

theoretical studies. The proposed computational implications can be broadly categorized into four groups:

P1) Improved expressivity of single neurons

P2) Improved use of neuronal resources and generalization capabilities

P3) Utilization of internal learning signals

P4) Enabling continual learning.

In the following subsections, we discuss example studies for each of these proposed computational advantages of

neurons with nonlinear dendrites as opposed to point neuron models.

P1: Improved expressivity of single neurons

Due to the nonlinear dendritic properties of many neuron types, and in particular pyramidal cells, their integrative

properties cannot be accurately described by the linear point neuron model. In fact, it was shown in (Poirazi et al.,

2003) that the firing rate of a detailed compartmental model of a hippocampal CA1 pyramidal cell can be well-modeled

by a two-layer neural network, see Fig. 2A. In this network the sigmoidal hidden layer represents nonlinear properties

of the dendrites and the output neuron models the summation of dendritic currents at the soma. The two-stage model

was also established viable for prediction of spike responses (Naud et al., 2014), for fast spiking interneuron models

(Tzilivaki et al., 2019), and even for single human neurons (Gidon et al., 2020) (see (Jadi et al., 2014) for a historical

review, see also (Beniaguev et al., 2020)).

For one particular setting of its synaptic weights, a neuron implements one function, i.e., one mapping from inputs

to its outputs. For different weight settings, different functions can be implemented. The term ”expressivity” of a neu-

ron — or more generally of a parameterized model in machine learning — refers to the number of functions that can be

implemented with different weight (parameter) settings. The larger the number of implementable functions, the more

expressive is the model. If single neurons operate like two-layer networks as proposed by the above studies, it means

that they are more expressive than point neuron models. The computational implications of the two-stage model have

been investigated in several studies and with models of various granularity, from simple rate-based models (Cazé et al.,

2013) to more elaborated models with temporal dynamics of dendritic spikes (Limbacher and Legenstein, 2020), see

Fig. 2. These studies show that single neurons can in principle compute linearly non-separable functions, which is

impossible for point neuron models. A recent example is the ability of human neurons to solve the Exclusive-OR

(XOR) problem at the dendritic level. Experiments in human L2/3 pyramidal neurons revealed a new type of dendritic
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Figure 2: Models of neurons with non-linear dendrites and possible computational implications. A) A generic representation of a two-layer neuron

model. Synaptic inputs (left) are integrated in non-linear and electrotonically segregated dendritic subunits. In the soma (right), dendritic outputs

are added. In rate-based models, the neuron is equivalent to a two-layer artificial neural network. Typically, the inputs are sparsely connected

to the dendritic subunits. Here, we depict the more general case of dense connections between these layers, which is in principle possible since

axons can contact several branches of a neuron. B) Two-layer model with dynamic dendritic plateau potentials. Segregated dendrites integrate

synaptic inputs temporally. Temporally extended (on the order of 100 ms) dendritic plateau potentials are stochastically elicited at times of high

branch potentials. Illustration of the feature binding problem. Abstract input features (’disk’, ’square’, ’blue’, ’orange’) are indicated by synaptic

inputs. Since dendritic plateau potentials that lead to somatic action potentials are elicited based on the local potential, they appear only if feature

combinations are active on a common branch (here: ’blue disk’ and ’orange square’) but not at different branches (here, ’blue square’ and ’orange

disk’). C) Synaptic rewiring on dendritic branches. Abstract input features (’blue’, ’orange’, ’green’) are encoded by a specific firing pattern of

the input neurons (top). Initially, input neurons are connected to branches randomly, brief dendritic spikes appear occasionally (middle left), and

the neuronal firing rate is low (bottom left). After rewiring, functionally related synapses are clustered on dendritic branches. Hence, the activation

of the input features leads to long lasting dendritic plateau potentials (middle right) and to an elevated firing rate of the neuron (bottom right). D)

Rewiring protects stored information by segregating functionally unrelated inputs onto different dendritic branches. Here, abstract input features

(’blue’, ’orange’, ’green’, ’red’, ’rose’) are activated sequentially (top). Novel input features cluster on free branches while previously established

clusters are retained (middle; shown is a schematic drawing of seven branches bi at five different time points). The neuron successively reorganizes

its synaptic connections such that it responds to any input feature that has been presented previously (bottom; shown is the wiring diagram for three

branches and the somatic response to two input features at two different time points).
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spikes (termed dCaAPs), with a counter intuitive feature: their amplitude decreases with stimulus strength. Biophysi-

cal modeling showed that the presence of these dCaAPs enables individual neurons—in fact individual dendrites—to

solve the XOR problem, a computation believed solvable only by multi-layer neural networks (Gidon et al., 2020).

Another example for a linearly non-separable function is the feature binding problem (Legenstein and Maass, 2011)

shown in Fig. 2B. Consider four synaptic inputs to a neuron indicating abstract features of a visual input. The features

are the geometric shape (‘disk’ or ‘square’) and the color (‘blue’ or ‘orange’). The neuron should be active when a

blue disk or an orange square is encountered, but not for a orange disk or a blue square. This is impossible for a point

neuron model, but easy to implement with a two-stage model (Fig. 2B). In addition, it is also shown in (Legenstein

and Maass, 2011) that local plasticity rules can self-organize the synaptic connections to learn such feature bindings

just from exposure to the corresponding patterns.

The role of local plasticity rules in maximally engaging dendritic nonlinearities was also nicely exemplified by

Poirazi and Mel (Poirazi and Mel, 2001) on a binary classification task using simplified mathematical neurons. In that

work, the authors trained simplified (star-like shaped) neurons (with m branches (subunits) and k synapses per branch)

under two schemes of dendritic integration: 1) a point-neuron like setting, where all weighted synaptic inputs were

combined linearly before passing the somatic nonlinearity and 2) a nonlinear setting, where each branch had it’s own

nonlinear activation function and branch outputs were summed before passing the somatic nonlinearity.

Table 1: Structural plasticity learning rule for rewiring axonal connections on a simple two layer model of neurons with nonlinear dendrites

• The weight of an existing synaptic contact could be increased or decreased (weight

change) and an existing contact could be eliminated and replaced with a new contact

from a different afferent input (structural change).

• The contacts targeted for elimination were those firing out-of-sync with other synapses

on the same branch and/or the neuron. A synapse was instead stabilized, via weight

increases, if it fired synchronously with other synapses on a branch and the branch

response was correlated with the neuron response. The (de-)correlation was identified

by maintaining a fitness score C as a synaptic tag.

• A structural change was implemented via axonal re-wiring, whereby (a subset of)

pre-synaptic axons were allowed to form and retract synapses randomly within the

m branches.

Learning involved both weight updates as well as structural (rewiring) changes, as outlined in Table 1. Plasticity

was driven by the degree of synchronous activation between synapses of the same branch. The authors showed that

this novel structural learning rule, allowed a cell with nonlinear branches to learn > 45 times more input patterns than

a cell with linear branches, despite both cell types having exactly the same number of trainable weights. The increase

in storage capacity was also demonstrated analytically, by counting all possible input configurations (originating from

a given number of axons) that led to district outcomes for each cell type. This finding also indicates a more efficient

use of synaptic resources by nonlinear dendrites, a topic that is described in more detail in Section P2: Neuronal

Resources.

Of note, while this study did use local information (the activity correlation among synapses within a branch), it

also relied on a global instructive signal (the cell’s response error) to guide plasticity within dendrites. The latter is

similar to how artificial neural networks (ANNs) learn via minimizing a global loss function. Here, the fitness score

C needed the calculation of derivatives of dendritic and somatic activations, which are computationally complex.

Section Shallow Learning shows several examples of how modified versions of this learning rule with reduced com-

plexity can be used for solving benchmark problems conventionally used in the machine learning community. These

simplifications also allow power-efficient integrated circuit realizations of the same using neuromorphic approaches

(Bhaduri et al., 2018).

Lastly, nonlinear dendritic integration is not only beneficial for pattern recognition or memory. In a computational
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study, it was proposed that nonlinear dendritic computations could enable neuronal networks to perform sampling-

based probabilistic inference on a quite general class of probability distributions (Pecevski et al., 2011).

P2: Improved use of neuronal resources and improved generalization capabilities

While single neurons are clearly more expressive with nonlinear dendrites, networks of point neuron models are

universally expressive even without dendritic nonlinearities. Specifically, it is well-known that even two-layer artifi-

cial neural networks are universal approximators. Namely, for any given function on a compact domain and a given

demanded precision, one can construct a two-layer neural network that approximates this function with that precision

(Hornik et al., 1990). Hence the advantage of nonlinear dendrites cannot be expressivity per se. Nevertheless, these

nonlinearities can play a role under resource constraints. Investigating this hypothesis, (Wu et al., 2018) compared

conventional deep neural networks to deep networks of neurons with nonlinear dendrites (see Section Deep Learn-

ing for more details). Non-linear—as opposed to linear—dendrites in interneurons were also predicted to provide

important resource savings in biological model networks: they enable the storage of individual associative memories

via the use of significantly fewer neurons, that fire at lower rates and whose activity is sparser than networks with

linear interneurons (Tzilivaki et al., 2019). A similar contribution of active dendrites in combination with synapse

clustering was seen in associative fear learning. Faster learning was experimentally reported in mutant mice with in-

creased synaptic turnover and increased synapse clustering. Computational modelling showed that increased synaptic

turnover underlined the increase in synapse clustering and enhanced the sparsity of associative memories learned by

model neurons. This enhancement in sparsity can minimize interference and enhance the storage/recall of multiple

memories (Frank et al., 2018). Overall, these findings suggest that dendritic nonlinearities enable biological networks

to learn and store information in a way that saves resources.

Maybe the most important resource constraint in the brain is connectivity. While most of the brain volume is

consumed by axons, the neurons in the brain are still extremely sparsely connected. Modern imaging techniques have

shown that this connectivity matrix is highly dynamic, with synaptic connections being established and removed on

the time scale of hours and days (Holtmaat et al., 2005; Stettler et al., 2006; Kasai et al., 2010; Loewenstein et al.,

2011; Rumpel and Triesch, 2016). It was hypothesized that these dynamics are used by the brain to optimize network

function under severe constraints on connectivity (Kappel et al., 2015b, 2018). A recent study has investigated the

role of dendrites in this process (Limbacher and Legenstein, 2020), see Fig. 2C. In a two-layer neuron model with

temporal dynamics of dendritic spikes, the authors conditioned synaptic plasticity on local dendritic plateau poten-

tials. During plateau potentials, pre-synaptic activity potentiated synaptic connections, while inactive synapses were

depressed. The plasticity also contained a stochastic component (Yasumatsu et al., 2008; Dvorkin and Ziv, 2016)

which included the removal of weak synapses and the stochastic addition of dormant connections. Mathematically,

this process can be described by a Fokker-Planck equation and it can be shown that it implements a sampling pro-

cess over connectivity configurations where co-active inputs are more likely to cluster on branches. Several studies

(Hussain et al., 2015; Roy and Basu, 2016) have also demonstrated that the use of neurons with nonlinear dendrites

allow rewiring based rules to learn sparse connectivity matrices which consume less synaptic resources than their

conventional ANN counterparts, while achieving similar classification accuracy on benchmark machine learning data

sets. These are discussed in more details in Section Shallow Learning. Such rewiring mechanisms have been proven

useful also for other technical applications, for example to train sparse deep neural networks (Bellec et al., 2018) or

connectivity-constrained neuromorphic hardware (Yan et al., 2019; Bhaduri et al., 2018).

P3: Utilization of internal learning signals

Biological plasticity rules may not necessarily match the best performing learning algorithms in ANNs. These

algorithms typically rely on backprop, a method where precise error signals are backpropagated through the network,

from the outputs (where errors are readily available) to neurons closer to the input. This learning principle has been

considered biologically implausible (Crick, 1989). It is clear that learning-related signals are communicated within

the brain (Roeper, 2013; Engelhard et al., 2019), for example in the form of neuromodulators such as dopamine

and acetylcholine. But these signals are quite different from error signals used in deep learning as they are not

neuron-specific, they are temporally imprecise, and come from specialized structures. In contrast, many molecular

and electric signals such as local dendritic spikes, the backpropagating action potential, Ca2+ concentrations, and

molecular messengers, are available within a neuron. Hence, if a neuron can be considered equivalent to a multi-layer
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neural network, there are many possibilities to orchestrate the tuning of synaptic weights and other plastic neuron

parameters within that neuron-specific network.

Such biological learning rules, in conjunction with active dendrites, were shown to sub-serve important func-

tions in biological networks. For example, Kastellakis et al. (Kastellakis et al., 2016) showed that clustered plasticity

together with the plasticity of neuronal excitability underlies the linking of information across time. This linking

is achieved by directing the storage of subsequent memories in common dendrites of overlapping neuronal popula-

tions, where axons from subsequent memories co-cluster within active dendrites. Similar findings were also seen

with respect to the formation of associated memories: the binding of information from separate input streams was

achieved via co-clustering of respective inputs from these streams within active dendrites (Kastellakis et al., 2016;

Legenstein and Maass, 2011; Limbacher and Legenstein, 2020). The general idea here is that local voltages in den-

dritic subunits can reinforce plasticity of co-active inputs within a dendritic subunit, leading to synaptic clustering.

The backpropagating action potentials on the other hand could serve as a global signal (with respect to the neuron)

that can communicate to other branches that the neuron is already active for the current input. This can be utilized

by plasticity rules to ensure that different branches are used to encode different associations (Legenstein and Maass,

2011; Limbacher and Legenstein, 2020).

Recently, experimental evidence was accumulated which shows that plasticity of synapses in the distal apical

dendrites of cortical pyramidal cells are gated by instructive signals (Magee and Grienberger, 2020). Several such

instructive signals have been identified, including Ca2+ spikes (Kampa et al., 2006, 2007), various types of dendritic

plateau potentials (Gambino et al., 2014; Bittner et al., 2015, 2017; Magee and Grienberger, 2020), or signals of

synaptic connections from other brain areas (Doron et al., 2020; Aru et al., 2020). In a recent theoretical study, Rao

et al. (Rao et al., 2021) investigated synaptic plasticity at distal dendrites in this context. They showed that with two

integration compartments, one somatic and one at the dendritic tuft, synaptic plasticity gated by an instructive signal

can give rise to a powerful learning method, a spike-based approximation of logistic regression. Logistic regression

can inherently deal with noisy data (as opposed to other methods such as the perceptron learning rule (Moldwin and

Segev, 2020). This property is important when one assumes for example that instructive signals are provided by

top-down connections from higher brain areas and that the learning goal is to predict bottom-up sensory inputs on

their basis (Larkum, 2013). Predictions are inherently uncertain, leading to noisy overlapping prediction targets for

which perceptron learning would fail. While the two-compartment model gives rise to a linear logistic regression

model, they show that much more complex target distributions can be learned when several dendritic compartments

are considered.

The interplay between local plasticity rules and nonlinear dendritic processing has also been studied in detailed

compartmental neuron models. Iannella et al. (Iannella et al., 2010) have observed the emergence of spatial synaptic

clusters in simulations of detailed compartmental models of L2/3 pyramidal neurons. In another study of detailed

L2/3 pyramidal neuron models, it was found that nonlinear dendritic effects give rise to a diverse set of plasticity rules

along the spatial extension of the model neuron and that distal plateau potentials can switch the direction of plasticity

at other synapses (Bono et al., 2017).

Finally, it has been argued that the electrotonic segregation between the basal dendrites and the apical tuft may

be utilized by pyramidal cells to combine error signals—coming from feedback connections to the dendritic tuft—

with feed-forward information arriving more proximal to the soma (Körding and König, 2001; Urbanczik and Senn,

2014; Guerguiev et al., 2017; Whittington and Bogacz, 2017; Sacramento et al., 2018; Richards and Lillicrap, 2019;

Whittington and Bogacz, 2019), see Section Deep Learning for more discussions on its relation to deep learning.

P4: Enabling continual learning

Current state-of-the-art deep neural networks can be trained on a comprehensive selection of tasks on which

they achieve impressive performance (LeCun et al., 2015). However, these neural networks typically suffer from a

phenomenon known as catastrophic forgetting (Robins, 1995; McCloskey and Cohen, 1989; French, 1999). When

they are trained on a new task, they forget what was learned before. This phenomenon, which is caused by updates

of network parameters that fail to preserve prior knowledge (Robins, 1995), makes these networks unsuitable in a

continual learning setup. The brain, however, has clearly implemented a clever and efficient algorithm to continually

acquire knew knowledge without forgetting the past.

A possible role of dendrites in continual learning was studied by (Cichon and Gan, 2015). Cichon and Gan

showed that a synaptic plasticity rule that depends on local dendritic activity enables different inputs to be processed
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on different dendritic branches, reducing their interference. More specifically, they found that different motor learning

tasks induce dendritic spikes in different dendritic branches of pyramidal cells (PCs) in the mouse motor cortex. A

possible explanation for this finding is that synaptic inputs are clustered onto dendritic branches in a task-specific

manner. Importantly, when this task-specific segregation of dendritic activity was pharmacologically disrupted, the

animals could still learn the current task, but performance on an earlier learned task degraded, indicating a role of

synaptic clustering in preserving previously required skills.

A recent computational study (Limbacher and Legenstein, 2020) showed that in a spiking neuron model for PCs

with dendritic non-linearities, synaptic clustering can indeed serve as a mechanism to mitigate catastrophic forgetting

in a pattern memorization task (Fig. 2D). Their model combines a generic stochastic rewiring principle (Kappel et al.,

2015a) with an NMDA-spike-mediated synaptic plasticity rule. They found that this synaptic rewiring model leads to

synaptic clustering of temporally correlated inputs on dendritic branches. This is in line with the idea that functionally

related inputs form spatial clusters on dendritic branches (Poirazi and Mel, 2001; Govindarajan et al., 2006; Kastellakis

et al., 2015). Importantly, the findings by (Limbacher and Legenstein, 2020) indicate that a completely local dendritic-

spike-dependent plasticity rule alone is not sufficient to protect previous memories in a sequential learning task.

The authors showed that by combining their model with an additional spike-timing-dependent plasticity (STDP)

mechanism, that introduces competition between dendritic branches (as proposed in (Legenstein and Maass, 2011)),

not only increases the continual learning capability of their model, but that this mechanism also increases the number

of input patterns that can be stored by a neuron.

An increased memory capacity was also observed in a hippocampal network model with active dendrites (Kaifosh

and Losonczy, 2016). The memory-encoding scheme in this model was based on non-linear interaction between

anatomically and functionally segregated inputs onto dendrites of two-compartmental PCs in areas CA3 and CA1.

The authors proposed somatic burst-firing due to interacting backpropagating action potentials and dendritic spikes

as a plasticity mechanism. They found that nonlinear dendrites enhance their models capacity to store and retrieve

information-rich memory engrams, which do not interfere even when a large number of highly similar memories are

stored.

The above findings from experimental and computational neuroscience have inspired the development of an algo-

rithm for artificial neural networks that addresses the challenge of continual learning in supervised and reinforcement

learning scenarios (Kirkpatrick et al., 2017). This algorithm, referred to as elastic weight consolidation (EWC), acts

by slowing down learning of certain weights identified based on how important they are to previous tasks. The au-

thors show that this task-specific synaptic consolidation allows multiple tasks to be learned with networks of fixed

size, and where tasks with related structure reuse shared components of the network. Hence, EWC allows artificial

neural networks to support continual learning of challenging tasks at large scale. A mechanistic explanation for the

EWC algorithm could be based on NMDA spikes. Bono and Clopath proposed that during associative learning, an

NMDA-spike-mediated plasticity mechanism in basal dendrites acts similarly to synaptic consolidation. In networks

of two-compartmental neuron models, this type of NMDA-spike-mediated plasticity can protect stored associations

from subsequent modifications when learning new associations (Bono and Clopath, 2017). Finally, the selective con-

solidation of some memories, but forgetting of others, was studied by (O’Donnell and Sejnowski, 2014). The authors

proposed a rule dependent on protein synthesis, which allows for selective memory consolidation even for simultane-

ous events that are represented by the same neural population. The selectivity in their model depends on functional

clustering of synapses on dendrites at the neuron level and the overlap of neuronal activity patterns at the circuit level.

Applications: Machine learning

The previous section Principles of Biological learning highlighted the computational benefits afforded by den-

drites in simulated networks and pointed out four major principles. However, the surveyed literature did not quantify

the efficiency of using nonlinear dendritic processing in real-world tasks such as image recognition. Such tasks are

used to benchmark conventional machine learning algorithms and have become the defacto method for comparing

new algorithms in the machine learning community. In this section, we review the literature reporting use of den-

dritic properties for resource efficient performance on several real-world data sets such as UCI (Dua et al., 2017),

MNIST (LeCun et al., 1998), CIFAR (Krizhevsky et al., 2009) etc. The MNIST data set comprises 60, 000 examples

of handwritten digits from 0 to 9 for training and a separate test set comprising 10, 000 samples. These samples are

good for training machine learning systems aiming to perform optical character recognition. The CIFAR data set is
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also for visual object recognition comprising 50, 000 training and 10, 000 test examples for objects belonging to vari-

ous categories spanning vehicles to animals. Lastly, the UCI repository has a wide variety of data sets such as medical

records for prognostics (breast cancer, diabetes etc), time series data (e.g. audiology, arrhythmia etc) and many more

(e.g. radar data in ionosphere data set; plant type classification in iris data set etc.). The UCI repository is popular to

test the performance of ML algorithms due to its wide diversity of data spanning low to high dimensionality of input

data and sample numbers. All these data sets primarily test the generalization capabilities of the algorithm on unseen

data. We refer to such data as being “real-world” since they reflect the variability of data distributions faced by ML

algorithms when deployed in different applications. We review work on shallow networks first (sub-section Shallow

Learning) when operating on these data sets followed by studies related to Deep Learning architectures (in sub-section

Deep Learning), for which the community has shown a special interest. All studies reviewed in this section adhere

to the principles P1 and P2 of improved expressivity and resource usage described in Section Principles of Biological

learning.

Shallow Learning

Numerous studies have utilized the non-linear amplification properties of dendrites along with some form of

plasticity to solve real-world learning tasks. Most of the plasticity mechanisms used in such studies (Fig. 3) include

a combination of structural and weight plasticity as described in Section P1: Expressivity. Beyond synaptic updates,

weight plasticity is also used to change the branch coupling coefficients while delay plasticity is used to change the

presumed distance of the synapse from the soma, a property that is particularly useful when learning spike-timing

coded patterns. The flexibility afforded by a network of neurons equipped with dendrites is summarized in Fig. 3

which shows the various degrees of freedom as i) synaptic weights W, ii) clustering of connections on one branch

and different compartments within that branch (iii) with different delays) and choice of branch coupling coefficients

β for the various branches when connecting to the soma. The function b() denotes a lumped branch nonlinearity

(as denoted earlier in Section P1: Expressivity) and g() is the lumped somatic nonlinearity typically selected as a

heaviside function to denote the all or none behavior of the action potential generation. This simplified diagram

ignores temporal dynamics which can be obtained by replacing g() with differential equations to represent different

neuron models such as leaky integrate and fire or Hodgkin-Huxley. The simplified model can be considered as an

approximation to the spiking model in the rate coding regime (Hussain et al., 2015) The following sections discuss

studies based on their use of the three plasticity mechanisms mentioned above.

Structural plasticity

The effect of nonlinear dendrites and structural plasticity (for binary synaptic connections) in memory capacity

was reviewed in Section P1: Expressivity. This earlier model (Poirazi and Mel, 2001) can be mathematically thought

of as modifying the structure of connections within dendritic branches shown in Fig. 3 without changing delays or

β. Structural plasticity can also create changes in W by allowing multiple connections from the same afferent input

to be created within a dendrite. The learning algorithm used in this work was described in Table 1 and was shown to

achieve higher performance on a binary classification task.

However, (Poirazi and Mel, 2001) had only used this structural plasticity mechanism for pattern discrimina-

tion/memorization. Generalization to unseen data, which is important for real world machine learning problems, was

not explored. Moreover, (Poirazi and Mel, 2001) only used static binary inputs which can be thought of as equivalent

to a binary rate code—its application to spike-timing-coded patterns was also missing. Lastly, hardware realization

of these systems on low-power neuromorphic substrates is essential for many applications (Basu et al., 2018)—the

previous learning rules as described in Table 1, used terms with derivatives of dendritic and somatic nonlinearities and

hence were not amenable for efficient hardware realization using integrated circuits.

Towards this goal, (Hussain et al., 2014b, 2015) created a hardware friendly learning rule whereby he introduced

a modification of the fitness score C by replacing the gradient of b() with the function itself. The change was based

on the intuition that for monotonically increasing functions, this should not change the ranking. Further, the gradient

of the somatic nonlinearity g() was replaced by a ternary valued signal to only guide the direction of change in C.

Lastly, to improve generalization to unseen data, a different function gmargin() with a smoother slope (instead of the

heaviside function g()) was used to include a margin in the training process similar to support vector machines (SVM)

in conventional machine learning. This hardware–friendly learning rule was shown to work as well as the original
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Figure 3: A generic network diagram of a neuron model equipped with dendrites. The degrees of freedom that can be potentially exploited by

a learning algorithm where the function b() denotes a lumped branch nonlinearity and g() denotes the somatic nonlinearity. Dendritic processing

has been used for several learning tasks which can be categorized according to the type of plasticity mechanisms used: structural, weight or delay

plasticity. The learning algorithm can change the weights of the synapses W (weight plasticity) as shown by the larger circle connecting afferent

2 vs afferent d on Dendrite #1. Secondly, the neuron can learn the clustering of the synapses in a compartment via structural changes or rewiring

(structural plasticity). For example, afferents 1 and 2 are clustered on Dendrite #2 while afferents 1 and d are clustered on Dendrite #m due to

association among these respective inputs. Third, the algorithm can also learn the desired distance from soma for each afferent thus affecting delays

(delay plasticity). This is particularly useful for input patterns encoded temporally. Lastly, learning can happen by changing branch coupling

coefficients β as well. This signifies the influence a particular dendritic branch voltage (V1, V2 etc) can exert on changing the somatic voltage.

one and the inclusion of margin allowed the network to classify real world data sets from the UCI repository. Further,

it was shown in (Bhaduri et al., 2018) that the margin based training enabled hardware realizations of these networks

to be resilient against statistical variations in analog integrated circuits. While these results were obtained in a batch

mode of training, (Hussain et al., 2015) also showed that a spike-based learning rule—Branch-specific Spike-time

dependent structural plasticity (BSTDSP)—was capable of computing the fitness score in an online fashion. This

work was later extended by the authors in (Hussain and Basu, 2016b) to demonstrate classification of handwritten

digits from the MNIST data set. The authors also showed that the morphology of the neurons in terms of number

of dendritic branches could be modified according to the difficulty of the classification problem, leading to a better

trade-off between classification accuracy and synaptic resources needed.

The use of spike-time based codes was first addressed in (Roy et al., 2013, 2014) where the authors used a neuron

with nonlinear dendrites (NNLD) as the readout layer for a liquid state machine (LSM) (Maass et al., 2002), a type of

spike based reservoir computing architecture. The output of the “liquid” or reservoir is a spatio-temporal spike train

which is the input to the NNLD. To utilize the earlier fitness score-based structural modification framework, the score

C was modified so that the binary input X is replaced by an analog value equivalent to the post-synaptic current (PSC)

at the synapse (obtained by convolving the spike train with a decaying exponential). To accelerate the learning, the

derivative of b() was used to compute the fitness as dictated by backpropagation. However, to make this hardware-

friendly, b() was chosen as a quadratic function so that the derivative was proportional to the input of the function and

easily computed. It was shown that the NNLD with binary synapses outperformed the conventionally used parallel

perceptron readout (PPR) in terms of classification accuracy while utilizing much fewer synaptic resources. The

authors also extended this approach in (San et al., 2014; Roy et al., 2015) to classify spike latency patterns similar
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to the ones in (Gutig and Sompolinsky, 2006). They showed that other learning rules, such as the Tempotron (Gutig

and Sompolinsky, 2006), could be used to compute the fitness score C. While this rule requires knowledge of the

full spike pattern to calculate C, online variants proposed in (Gutig and Sompolinsky, 2006) could potentially be used

here as well.

Weight plasticity

The papers discussed in Section Structural plasticity modified the structure of the connection matrix and could

also modify W to a certain extent; but they all assumed equal unit strength of branch coupling β for each dendritic

branch to the soma. Instead, Tapson et al (Tapson et al., 2013) explored the capacity of a network where the structure

of the connections is fixed, values of W are random and only values of β are learned. Since only one layer of weights

are learned, it can be done in a batch using the Moore Penrose pseudo-inverse method. This is similar, in spirit, to the

Neural Engineering Framework (NEF) where the input is projected to a high dimensional space using a network of

randomly weighted neurons. However, in contrast to NEF where many neurons are needed to implement a function,

here dendrites are used as a substitute. Moreover, the method has been shown to work for spike-time codes instead of

rate codes as employed in NEF. While this work used a batch update mode, an online pseudo-inverse update method

(OPIUM) may also be used as pointed out by the authors. Note that the modification of branch coupling strengths

were studied from a theoretical viewpoint in (Legenstein and Maass, 2011) and this was discussed earlier in Section

P3: Internal Learning.

Finally, in addition to supervised classification schemes (Hussain et al., 2015; Roy et al., 2014) (whereby knowl-

edge of the correct class for each pattern is assumed), weight plasticity was also implemented in unsupervised learning

( whereby neurons alter their weights based on self-organizing principles). An important, bio-inspired learning rule

in this category is spike-time-dependent plasticity (STDP)—a Hebbian rule where the weight change of a synapse de-

pends on the time difference between the firing of pre- and post-synaptic neurons. This is usually implemented in an

online fashion where pre-spikes update the weight based on a memory trace of the post-spike and vice-versa. STDP

has been shown to be useful in detecting repeating patterns of spikes among a large number of distractors as well

as classifying spatio-temporal spike patterns. In (Roy and Basu, 2016), the authors use NNLD in a winner-take-all

(WTA) architecture where the competition enables neurons to tune to different spike patterns. An STDP like Hebbian

rule is used to update the fitness score; but it is modified to be branch specific by multiplying the derivative of b() to

the pre- and post-synaptic memory traces. This fitness score is again used to replace synapses after every batch of

patterns. It was shown that the NNLDs eventually learned to specialize to different spatio-temporal patterns and their

order of firing could be used to discriminate between patterns.

Delay plasticity

The studies in Section Principles of Biological learning as well as Sub-sections Structural plasticity, Weight

plasticity focused on modifying network structure and/or synaptic weights. However, depending on the location of

the synapse on the dendritic tree, there will be varying delays for its input spike to affect the somatic integration.

This has been exploited to learn different classes of spike latency patterns in (Hussain et al., 2014a). A neuron in this

network modifies delays for each of the input spikes using a learning rule adapted from the tempotron rule (Gutig and

Sompolinsky, 2006) while weights are kept constant—hence, it is termed “Deltron”. Similar to the Tempotron, the

network tries to learn that part of the pattern which is most salient, i.e. has the highest number of synchronous inputs.

The authors demonstrated the memory capacity of such learning rules as a function of the load (ratio of number of

patterns to number of synapses) and showed classification accuracy of ≈ 80% for load of 2.

A last category of research related more to a signal processing aspect of passive dendritic cables did not use

plasticity directly, but relied on their analogy with continuous time hidden markov model (HMM) formulations (Hasler

et al., 2007; George et al., 2013). In this line of work, the authors draw an analogy between the activation along a

dendrite and a traveling wave equation that is similar to the continuous time formulation of hidden markov models

(HMM) (Lazzaro et al., 1996). The traveling wave effect was found to be more prominent when the dendritic diameter

was assumed to increase gradually towards the soma. The authors used this system to perform simple keyword

classification where the spiking inputs to each compartment signified the probability of detecting a phoneme and the

dendritic line helped identify the correct sequence. Different words were represented by separate dendritic branches

and a WTA is used to select the winning dendrite. While not explicitly shown by the authors, to generalize this

scheme to classify a given set of patterns, one would need to learn the location of connection of an input afferent on
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each dendritic branch thus selecting appropriate delays. Hence, this can be thought of as a form of delay or structural

plasticity.

The studies described in Section Shallow Learning used only one form or another of the palsticity mechanisms de-

scribed above, without combining them. Some initial work in this direction was done in (Hussain and Basu, 2016a) to

combine weight and delay plasticity through structural modification, but the blow-up of the parameter space prevented

large scale explorations. With the availability of better computing resources thanks to the Deep Learning revolution,

we envision this to be a useful avenue of future research. Further, the theoretical studies in Section Principles of Bio-

logical learning have rarely considered the effect of dendrites in enabling learning precise temporal codes of spikes,

a topic more frequently explored in engineering applications as described in Section Delay plasticity. With the rising

popularity of event-driven sensors and spiking neural networks, as well as better computing resources, we envision

more studies in this direction. Table 2 summarizes the different approaches according to their plasticity mechanisms as

well as salient features of each of them. The next section introduces more recent work at the intersection of dendritic

processing and deep neural networks.

Table 2: Comparison of the different types of dendritic learning reviewed in this section

Ref Plasticity Supervised Online Batch Spike-

time

based

Comments

Hussain

2014

Delay Yes No Yes Yes Learning rule inspired by tempotron;

Online approximation possible

Hussain

2015

Structural

(Weight)

Yes Yes Yes No Online update of fitness score, batch

update of weight; Spike rate code; UCI

data set

Roy

2014

Structural

(Weight)

Yes Yes Yes Yes Online update of fitness score, batch

update of weight; Decode output of

reservoir in Liquid state machine

Roy

2016

Structural

(Weight)

No Yes Yes Yes Unsupervised learning—branch specific

STDP on neurons in WTA

Tapson

2013

Weight Yes No Yes Yes Inspired by NEF, first layer W is random;

Online approximation possible

George

2013

- Yes - - Yes Dendrite cable used as HMM; Input to

dendrite is probability of phoneme;

Application of wordspotting

Hussain

2016

Structural

(Weight)

Yes No Yes No MNIST data set; Dendrite morphology

depends on problem difficulty

Wu

2018

Weight Yes No Yes No Improved model expressivity; UCI data

set

STDP: Spike-time dependent plasticity; WTA: Winner take all; NEF: Neural Engineering Framework; HMM: Hidden Markov Model

Deep Learning

As shown in previous sections, dendritic compartmentalization provides an array of powerful features to neu-

rons, the core information processing units of our brain. Moreover, both experimental and computational studies in

Neuroscience are pointing to the significant advantages provided by dendrites in neuronal and circuit computations.

However, in the emerging field of deep learning research, neurons are still modeled as linear summation units followed

by the nonlinear output function, also known as ”point neurons”. The natural question that arises is whether adopt-

ing an architecture design that resembles that of dendrites would improve the performance of modern deep neural

networks? We briefly discuss the few studies that explored this question (Wu et al., 2018; Jones and Kording, 2021).

To understand how furnishing artificial neurons with dendrite-like features could affect deep neural network mod-

els, we assess the following characteristics: (1) The expressive power of dendritic neural networks; (2) the ability of

dendritic neural networks to learn target functions through learning algorithms, such as Stochastic Gradient Descent
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(SGD); (3) the generalization performance of trained dendritic neural networks and the inductive biases associated

with dendritic structure under different configurations and (4) the performance of dendritic neural networks on real-

world applications. Among these, the first two points are similar to the principles P1 and P2 discussed in Section

Principles of Biological learning.

It is commonly accepted that a deep network can achieve a better approximation to arbitrary functions (namely

it has higher expressivity) than a shallow network, when equipped with an equivalent amount of parameters (Poggio

et al., 2020; Montúfar et al., 2014). Replacing point neurons in a neural network with neurons equipped with den-

dritic structure is somewhat similar to inserting extra layers into a model; thus we expect neural networks fitted with

dendrites to offer more fitting power. The work in (Poirazi and Mel, 2001; Poirazi et al., 2003) gives us an indication

of the extra fitting power dendritic neural networks can offer on a theoretical basis and on approximating neuronal

firing behavior (discussed in Section P1: Expressivity). In (Wu et al., 2018), the authors assess model complexity

through empirically measuring the number of linear regions their dendritic neural networks models can map input-

space into (Montúfar et al., 2014; Raghu et al., 2017). Their results show that segregating a point neuron into smaller

dendritic subunits indeed leads to a much larger number of linear regions, thus implying greater expressivity.

Model expressivity describes the potential of a model to approximate certain functions of high complexity, i.e.

whether there exist solutions in the parametric space of a model that can give a good approximation of a target

function. However, the goal of model learning is to identify those solutions from a limited set of training examples.

While it is known that such a training task is an NP-complete problem (Blum and Rivest, 1992), empirical approaches,

such as the SGD algorithm, can nevertheless give outstanding parametric solutions for the problem. This also implies

that the expressivity of a model might not materialize to good solutions. Hence, for neural networks equipped with

dendritic components, appropriate learning algorithms must be used so as to arrive at desirable solutions. In Wu

et al. (Wu et al., 2018), the authors utilize the Maxout activation function (Goodfellow et al., 2013) to mimic the

active dendritic properties of biological neurons. The adoption of this activation function, presumably also allows

the gradient-based optimization algorithm they used to arrive at better optimal than what can be achieved when more

standard activation functions, such as ReLU (Wu et al., 2018), are utilized.

Arriving at a solution that fits the training data set well, in general, does not guarantee the model to also perform

well on unseen test data. That is, a model with low training loss does not always give a low test loss or a good

generalization performance. Theoretical research tells us that an over-parameterized model can overfit training data,

which leads to poor prediction performance on test data. However, empirical results from deep learning research

suggest otherwise. When trained with efficient data, heavily overparameterized deep neural network models greatly

outperform traditional machine learning models in a wide array of tasks. Moreover, increasing the depth and width

of deep neural network models, which push models deeper into the overparameterization regime, can improve model

generalization performance further. Splitting a single unit point neuron into multiple dendritic subunits can, in a way,

be considered as a network with greater width and depth. Will this lead to improved generalization performance as

in the typical deep neural networks? In Wu et al. (Wu et al., 2018), their dendritic neural network models are tested

on both small scale image data sets and a large array of data sets from the UCI repository. In their experiments,

dendritic neural network models show no improved performance on image data sets while giving improved average

performance over the UCI data set. It is important to point out here that the authors in (Wu et al., 2018) use a fixed

connection map between layer inputs and dendritic subunits, which greatly limits the functional space the learning

algorithm can explore. We hypothesize that releasing this constraint, in a way similar to neuronal structural plasticity,

can lead to an improvement in both expressive power and generalization performance of dendritic neural networks.

Along the same lines, work by Jones et.al., (Jones and Kording, 2021) shows that neural network models comprised

by single neurons with a binary dendritic tree can out-perform linear models and reach comparable performance of

standard two-layer fully connected neural networks.

Equipped with greater computational power, can dendritic neural network models be beneficial for real-world AI

tasks that heavily rely on modern neural networks? To give a couple of examples of recent real-world applications of

AI, behind the widely adopted modern face recognition algorithms (Kortli et al., 2020) are typically various different

kinds of convolutional neural network (LeCun et al., 1995) architectures optimized for best recognition accuracy.

When we call the customer service of banks or online stores, most likely our calls will be received by some sort of

droids that are equipped with voice recognition systems. Again, modern neural networks are core parts behind those

systems. Typically the neural networks used in those systems are recurrent neural networks or 1-D convolutional

neural networks (Tandel et al., 2020). All those neural networks are based on standard point-neurons instead of
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neurons equipped with dendritic structure.

The most important characteristic of dendritic neural networks is that the connection map between the network

layer is sparse. The computation of a dendritic layer described in Wu et al. (Wu et al., 2018) can be performed

by standard General Matrix Multiply (GEMM) computing routines on general-purpose GPUs or CPUs if we ignore

connection sparsity. However, such an approach is inefficient. The difficulty we need to overcome for the computation

of dendritic neural networks is the same issue modern sparse neural networks need to overcome. Wu et al. (Wu et al.,

2018) proposed an efficiency orientated sparse network structure that constrains the connection map with an intra-

group sparsity design. Such a design can allow an efficient computing dataflow for both dendritic neural networks

and standard sparse neural networks, therefore, removing a critical obstacle in the real-world application for dendritic

neural networks. The proposed intra-group sparsity structure is adopted by the recently released Nvidia A100 GPU

for sparse neural network acceleration (Pool, 2020), making the algorithm directly accessible for dendritic neural

network acceleration.

Beyond the role of dendrites in providing neural networks with greater computational power, the deep learning

community is using dendritic compartmentalization to address the challenging credit assignment problem. For a typi-

cal training task, deep neural networks are trained with the back-propagation algorithm, that is, gradients with respect

to the model loss metric are calculated by propagating error signal with the chain rule of differentiation. The standard

back-propagation algorithm is generally perceived as problematic for biological neuronal networks. The recent suc-

cess of deep learning research has re-energized the interest in understanding the credit assignment algorithms used by

our brains (Lillicrap et al., 2020). It has been argued that the electronic segregation between the basal dendrites and

the apical tuft may be utilized by pyramidal cells to combine error signals—coming from feedback connections to the

dendritic tuft—with feed-forward information arriving more proximal to the soma. Several computational studies have

proposed that this could give rise to backpropagation-like learning processes (Körding and König, 2001; Urbanczik

and Senn, 2014; Guerguiev et al., 2017; Whittington and Bogacz, 2017; Sacramento et al., 2018; Richards and Lil-

licrap, 2019; Whittington and Bogacz, 2019; Illing et al., 2020; Payeur et al., 2020; Nøkland and Eidnes, 2019).

We believe this is a promising area of further research for both the deep learning and computational neuroscience

communities.

Conclusion and Discussion

In this review paper, we presented a summary of past research in exploiting dendritic nonlinearities for useful

computations. In the first part, we summarized the neurobiology behind dendritic information processing and reviewed

models for how this processing—in conjunction with synaptic plasticity mechanisms—can give rise to improved

expressivity, better use of neuronal resources, and various biologically plausible learning processes. Although the

processes that give rise to human intelligence are far from being understood, the emerging picture is that dendritic

processing and plasticity mechanisms that depend on a variety of cell-internal signals are a crucial component of the

puzzle. Recent experimental evidence indicates that plasticity of tuft synapses of cortical pyramidal cells are gated

by instructive signals (Magee and Grienberger, 2020; Gambino et al., 2014; Bittner et al., 2015, 2017; Magee and

Grienberger, 2020; Doron et al., 2020). It is an open question how such signals can be utilized in deep recurrent

networks and how they interact with unsupervised learning mechanisms and synaptic clustering.

A role of dendritic processing in continual learning has been proposed and investigated in models (Cichon and

Gan, 2015; O’Donnell and Sejnowski, 2014; Bono and Clopath, 2017; Limbacher and Legenstein, 2020). Although

these models provide a proof of concept, it is still unclear whether they scale to large networks and more complex

tasks. An intriguing hypothesis is that in biological networks, continual learning is achieved through a mix of plasticity

processes using dendritic signals with consolidation mechanisms and an orchestration of learning in diverse areas

through top-down signals. A compelling integrative theory for this is still missing.

Most work on the computational implications of nonlinear dendritic processing focused on the two-stage model

(Poirazi et al., 2003) with static nonlinearities. A recent study analyzed the nonlinear properties of dendrites of mouse

layer 5 pyramidal cells in prefrontal cortex by fitting a cascade filter model (Kalmbach et al., 2017). They also found

pronounced nonlinear behavior. Interestingly, their study revealed that the filter had a nonlinear component that is

selective to specific input dynamics (i.e., a specific rise time of the injected input). The computational implications of

such dynamical dendritic processing is an interesting topic for future research.
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Next, we presented a summary of applications where neurons with non-linear dendrites are used for machine

learning. These methods used mostly structural, weight or delay plasticity to solve tasks from synthetic as well as

real world data sets such as MNIST, UCI etc. The most commonly used architectures are shallow with one stage of

learning embedded within a two-layer network while the other layer is fixed. The general observation is that for similar

task accuracy, dendritic neurons use far fewer synaptic resources than their conventional fully connected counterparts.

Finally, the most recent trend is to incorporate concepts from dendritic processing into conventional deep learning

architectures to take advantage of the efficient training process. A core feature associated with dendritic deep neural

networks is that the inputs to a neuron are split into different computing units—thus the number of inputs received

by each computing unit is significantly reduced. Constraining the input size of a computing unit is widely adopted

in modern deep neural network designs. For example, modern convolutional neural networks typically utilize filters

with a small receptive field size of 3 × 3; this significantly reduces the number of input features a computing unit

receives while imposing a beneficial inductive bias to those models. Similarly, network in network (Lin et al., 2013;

Sandler et al., 2018) and group convolutional network (Zhang et al., 2017) architectures further reduce the input

dimension a unit receives. While the dendritic structure is similar to those model designs in the aspect of reduced

subunit input size, there is a crucial difference. In a dendritic network, the outputs of dendritic branches are only

used in calculating the corresponding downstream soma outputs. Such designs avoid the explosion of the hidden

layer output dimensionality, and thus can greatly reduce the computing complexity of the downstream layer. Can

we achieve a better balance between generalization performance and computing complexity with the dendritic neural

network? This is an important question we need to answer.

The task of putting dendritic neural networks into real-world applications is still at the very early stages. Many

questions remain to be addressed: How might network parameters and hidden value quantization interact with den-

dritic structure? Will such dendritic networks work well with modern general-purpose computing hardware? Is there

one best dendritic subunit size for all learning tasks? Should we use one fixed subunit size for one specific learning

task or should the sizes of dendritic subunits be varied? While there are many questions, the addition of dendritic

processing to current deep networks adds a new dimension for exploration and optimization with strong evidence

from biology.
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